Plastic Fiber Optic Red LED

APPLICATIONS

- ► Low Cost Analog and Digital Data Links
- ► Automotive Electronics
- ► Digitized Audio
- ► Medical instruments
- ► PC-to-Peripheral Data Links
- ► Robotics Communications
- ► Motor Controller Triggering
- ► EMC/EMI Signal Isolation
- ► Local Area Networks
- ► Intra-System Links: Board-to-Board, Rack-to-Rack

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T_J) 85°C
Reverse Voltage (V_R)
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C$ 60 mW
De-rate Above 25°C1.1 mW/°C
Forward Current, DC (I_F) 35 mA
Surge Current (I _{FSM}) t≤10 µs150 mA

DESCRIPTION

The IF-E96 is a low-cost, high-speed, visible red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum is produced by a GaAlAs die which peaks at 660 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal microlens and a precision-molded PBT housing to maximize optical coupling into standard 1000 μ m core plastic fiber cable.

Application Highlights

The performance/price ratio of the IF-E96 is particularly attractive for high volume design applications. The visible red output has low attenuation in PMMA plastic fiber and aids in troubleshooting installations. When used with an IF-D96 photologic detector the IF-E96 can achieve data rates of 5 Mbps. Fast transition times and low attenuation make the IF-E96 an excellent device selection for low cost analog and digital data links up to 75 meters.

FEATURES

- ◆ High Performance at Low Cost
- ◆ Visible Red Output Aids Troubleshooting
- ◆ Low Transmission Loss with PMMA Plastic Fiber
- Fast Transition Times
- \blacklozenge Mates with standard 1000 μm core jacketed plastic fiber cable
- ◆ No Optical Design required
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination
- ◆ Light-Tight Housing Provides Interference-Free Transmission
- RoHS Compliant

Characteristics $(T_A=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{PEAK}	650	660	670	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	20	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber ≤ 0.1 mm, 1 m SH4001 fiber, I _F =20 mA	Φ_{\min}	125 - 9.0	200 -7.0	300 - 5.2	μW dBm
Switching Times (10% to 90% and 90% to 10%) ($\rm I_F{=}20~mA)$	t _r , t _f	_	.1	_	μs
Capacitance (F=1 MHz)	C ₀	-	30	-	pF
Forward Voltage (I _F =20 mA)	V _f	-	-	1.8	V
Temperature Coefficient, λ_{PEAK}	TC_{λ}		0.2		nm/K

IF-E96

Plastic Fiber Optic Red LED

FIGURE 1. Normalized power launched versus forward current.

FIGURE 2. Typical spectral output versus wavelength.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

FIGURE 4. Case outline.